Search results

Search for "hydrogen sensing" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • nanoparticles loaded with graphene have an enhanced acetone response at 350 °C with increased graphene loading level (best at 5 wt % graphene) [40]. ZnO nanostructures doped with nickel and rGO were used for hydrogen sensing at 100 °C [34]. The decoration of MOS with a noble metal, such as Pd or Pt, improves
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • element for hydrogen-sensing applications [23]. The mechanical properties of nanoporous samples have been extensively studied in the literature, especially for the model system of nanoporous gold (npAu). Reports on potential-controlled creep [24], fracture [25] and strength [26] in npAu add to the list of
PDF
Album
Full Research Paper
Published 10 Dec 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • is 4.1 times higher than that of pure SnO2 [184]. Al- and Co-doped SnO2 NFs (average diameter 80–120 nm) have also been evaluated for hydrogen sensing [181][185][186]. These Co-doped SnO2 NFs show a response of 24 toward 100 ppm of hydrogen at 330 °C with a response and recovery time of 2 s and less
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Nanocrystalline TiO2/SnO2 heterostructures for gas sensing

  • Barbara Lyson-Sypien,
  • Anna Kusior,
  • Mieczylaw Rekas,
  • Jan Zukrowski,
  • Marta Gajewska,
  • Katarzyna Michalow-Mauke,
  • Thomas Graule,
  • Marta Radecka and
  • Katarzyna Zakrzewska

Beilstein J. Nanotechnol. 2017, 8, 108–122, doi:10.3762/bjnano.8.12

Graphical Abstract
  • heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing
  • properties [21][22][23]. However, its application to nano-heterostructures for gas sensing is not known. The aim of the current work is to study the role of nanocrystalline TiO2/SnO2 n–n heterojunctions for hydrogen sensing. Within this work the detailed study on crystallographic structure, morphology
PDF
Album
Full Research Paper
Published 12 Jan 2017

Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles

  • Anh-Thu Thi Do,
  • Hong Thai Giang,
  • Thu Thi Do,
  • Ngan Quang Pham and
  • Giang Truong Ho

Beilstein J. Nanotechnol. 2014, 5, 1261–1267, doi:10.3762/bjnano.5.140

Graphical Abstract
  • of zinc oxide nanoparticles on the photoluminescence (PL) properties and hydrogen sensing characteristics of gas sensors is investigated. The PL intensity shows that the carrier dynamics coincides with the buildup of the Pd-related green emission. The comparison between the deep level emission and
  • : carrier dynamics; hydrogen sensing; Pd-doped ZnO; photoluminescence; sensor; Introduction Semiconductor zinc oxides (ZnO) nanocrystals are not only interesting for fundamental physics, but they are also important for both optoelectronic and emerging electronic device applications, in particular for
  • hydrogen sensing [1][2][3][4][5][6]. The key features and availability of ZnO nanocrystals in distributed discrete gas sensing devices crucially depend on the growth conditions. These conditions strongly influence their size, uniformity and defects. Optical properties and gas sensing characteristics in ZnO
PDF
Album
Full Research Paper
Published 13 Aug 2014
Other Beilstein-Institut Open Science Activities